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Abstract
We continue our investigation of the ZN -Baxter–Bazhanov–Stroganov model
using the method of separation of variables [1]. In this paper, we calculate the
norms and matrix elements of a local ZN -spin operator between eigenvectors
of the auxiliary problem. For the norm the multiple sums over the intermediate
states are performed explicitly. In the case N = 2, we solve the Baxter equation
and obtain form-factors of the spin operator of the periodic Ising model on a
finite lattice.

PACS numbers: 75.10.Hk, 75.10.Jm, 05.50.+q, 02.30.Ik

1. Introduction

The Baxter–Bazhanov–Stroganov model (BBS model, also known as the τ (2) model) [2–5]
has attracted considerable interest, because via functional relations it is related to the solvable
ZN -chiral Potts model (CPM). Solving these functional relations has been the main method
to calculate the eigenvalues of the CPM [6]. However, also by itself, the BBS model is an
interesting lattice spin model with cyclic ZN spin-variables, which is closely related to the
six-vertex model at roots of unity [4, 7, 8]. The BBS model in its vertex formulation can be
solved using the functional Bethe ansatz or separation of variables (SoV) method [9]. For
N = 2 it is equivalent to a generalized free-fermion Ising model [10].

Using the formulation of the BBS model in terms of cyclic L-operators [4, 7, 11] in [1],
we developed a general method for the construction of its transfer matrix eigenvectors. Our
approach is an adaptation of the SoV method of [9, 12] to N-state spin chain models. In order
to find the eigenvectors of the transfer matrix we first obtain the eigenvectors of a certain
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auxiliary integrable system. Commuting integrals of this auxiliary system are generated by
the off-diagonal elements of the monodromy matrix of the BBS model. Then the eigenvectors
of the auxiliary system serve as building blocks for the eigenvectors of the periodic BBS
model. The multi-variable kernel which relates the respective eigenvectors can be presented
as the product of single variable functions (SoV). Each of these functions satisfies the Baxter
equation. In [1], we showed that the existence of non-trivial solutions of these equations is
equivalent to the well-known functional relations [2, 4, 5] for the transfer matrix of the BBS
model.

The goal of this paper is to use the explicit constructions of [1] for calculating matrix
elements or form-factors of local operators of the BBS model. Since the eigenvectors are
given in terms of multiple summations, the main concern of our calculations is to perform
these sums explicitly in order to get factorized expressions for the form-factors and norms.
For N = 2 from the results of our first paper we calculate spin operator matrix elements of
the generalized Ising model.

We hope that the methods developed in [1] and in this paper will allow to find analytical
formulae for matrix elements of the CPM.

We would like to mention the paper [13], where matrix elements of local operators for
the Toda chain are calculated using the eigenvectors of [12].

This paper is organized as follows. In sections 2 and 3, we recall the results of [1]
for the right eigenfunctions of Bn(λ), adding the analogous results for the respective left
eigenfunctions, pointing out the differences. Then we calculate the overlap of the right
and left eigenfunctions of Bn(λ), i.e. the norms. Here the main result will be that the sum
over intermediate quantum numbers can be performed explicitly. In section 4 we pass to the
periodic case and give the Baxter equations. In section 5, we concentrate on the case N = 2 and
calculate the overlap of the eigenvectors of the periodic transfer matrix tn(λ) = An(λ)+Dn(λ)

for the homogeneous BBS model. At the end of section 5 we also write a result for the matrix
elements of the single particle operators un, which still has multiple summations over discrete
internal variables. In section 6, using explicit solutions of the Baxter equation for the case of
the homogeneous Ising model, we announce the factorized expression for the matrix elements
of the one site spin operator where all internal summations have been performed. The details of
this calculation will be given in a forthcoming paper [16]. These will prove a result conjectured
by Bugrij and Lisovyy for the matrix elements of the spin operator in the Ising model on a
finite lattice [14, 15]. Finally, section 7 summarizes our results and the appendix explains our
summation technique.

2. L-operator formulation of the BBS model

We define the BBS model as a quantum chain model in the L-operator vertex formulation
(the relation to the formulation as a face model can be found in [1, 2]). To each site k of
the quantum chain we associate a cyclic L-operator [4, 7, 11] acting in a two-dimensional
auxiliary space

Lk(λ) =
(

1 + λ�kvk, λu−1
k (ak − bkvk)

uk(ck − dkvk), λakck + vkbkdk/�k

)
k = 1, 2, . . . , n. (1)

At each site k there are ultra-local Weyl elements uk and vk obeying the commutation rules
and normalization:

uj uk = ukuj , vj vk = vkvj , uj vk = ωδj,k vkuj ,

ω = e2π i/N , uN
k = vN

k = 1.
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λ is the spectral parameter. We have five parameters �k, ak, bk, ck, dk per site. At each site k
we define a N-dimensional linear space (quantum space) Vk with the basis |γ 〉k, γ ∈ ZN , the
dual space V∗

k with the basis k〈γ |, γ ∈ ZN and the natural pairing k〈γ ′|γ 〉k = δγ ′,γ . In Vk the
Weyl elements uk and vk act by the formulae

uk|γ 〉k = ωγ |γ 〉k, vk|γ 〉k = |γ + 1〉k.
In V∗

k these Weyl elements act as follows:

k〈γ |uk =k 〈γ |ωγ , k〈γ |vk =k 〈γ − 1|.
The monodromy matrix for the quantum chain with n sites is defined by

Tn(λ) = L1(λ)L2(λ) · · ·Ln(λ) =
(

An(λ) Bn(λ)

Cn(λ) Dn(λ)

)
. (2)

The transfer matrix is defined to be the trace in the auxiliary space tn(λ) = tr Tn(λ) =
An(λ) + Dn(λ). This quantum chain is integrable because the L-operators (1) are intertwined
by the twisted 6-vertex R-matrix at roots of unity. It leads to [tn(λ), tn(µ)] = 0 and so tn(λ) is
the generating function for the commuting set of non-local and non-Hermitian Hamiltonians
H0, . . . , Hn of the model

tn(λ) = H0 + H1λ + · · · + Hn−1λ
n−1 + Hnλ

n.

From the intertwining relation, it follows that Bn(λ) is the generating function for another
commuting set of operators h1, . . . , hn:

[Bn(λ), Bn(µ)] = 0, Bn(λ) = h1λ + h2λ
2 + · · · + hnλ

n.

Following Sklyanin [9], we shall first solve the eigenvalue problem for this last set of
commuting operators, which turns out to be possible by a recursive procedure. After this, the
periodic problem will be related to this auxiliary result by the Baxter equations. After proper
normalization by a Sklyanin’s measure, the kernel of the Q-operator factorizes into a product
of single variable functions (SoV).

3. Eigenvectors of Bn(λ)

3.1. New basis vectors, one-site states

In the root of unity case an important role is played by the cyclic function wp(γ ) [17] which
depends on the ZN -variable γ and on a point p = (x, y) on the Fermat curve xN + yN = 1.
We define wp(γ ) by the difference equation

wp(γ )

wp(γ − 1)
= y

1 − ωγ x
, wp(0) = 1, γ ∈ ZN . (3)

The Fermat curve restriction guarantees the cyclic property: wp(γ + N) = wp(γ ). The
function wp(γ ) is a root of unity analogue of the q-gamma function.

It is convenient to change the bases in the spaces Vk and V∗
k . Instead of |γ 〉k and

k〈γ |, γ ∈ ZN , we will use the vectors

|ψρ〉k =
∑

γ

wpR
k
(γ − ρ)|γ 〉k, k〈ψρ | =

∑
γ

1

wpL
k
(γ − ρ − 1)

k

〈γ |, ρ ∈ ZN . (4)

The coordinates of the Fermat curve points pL
k = (

xL
k , yL

k

)
and pR

k = (
xR

k , yR
k

)
are defined as

follows. Let us fix some value of rk to satisfy rN
k = aN

k − bN
k . (We shall consider generic

parameters such that rk �= 0.) Then

xk = xL
k = xR

k = rk

ak

, yk = yR
k = bk

ak

, yL
k = bk

ωak

.
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Observe that yR
k = ωyL

k , while xL
k = xR

k . The vectors (4) are eigenvectors of the upper
off-diagonal matrix element λu−1

k (ak − bkvk) of the operator Lk:

λu−1
k (ak − bkvk)|ψρ〉k = λrkω

−ρ |ψρ〉k, (5)

k〈ψρ |λu−1
k (ak − bkvk) = λrkω

−ρ
k〈ψρ |. (6)

The first equality has been proved in [1], the second relation follows very similarly. The action
of the operator vk is

k〈ψρ |vk = k〈ψρ−1|, vk|ψρ〉k = |ψρ+1〉k.

3.2. Right and left eigenvectors of Bn(λ) for the general chain length n

The eigenvectors of Bn(λ) are labelled by the vector ρn = (ρn,0, . . . , ρn,n−1) ∈ (ZN)n. Let us
further define

ρ̃n =
n−1∑
k=0

ρn,k; ρ′
n = (ρn,1, . . . , ρn,n−1) ∈ (ZN)n−1

and ρ±k
n denotes the vector ρn in which ρn,k is replaced by ρn,k ± 1, i.e.

ρ±k
n = (ρn,0, . . . , ρn,k ± 1, . . . , ρn,n−1), k = 0, 1, . . . , n − 1.

The following formulae, which were derived in [1], give an iterative procedure to obtain
the eigenvectors of Bn(λ) from eigenvectors of Bn−1(λ) and single site vectors defined by (4).

The vector

|
ρn
〉 =

∑
ρn−1∈(ZN )n−1

ρn∈ZN

QR(ρn−1, ρn|ρn)|
ρn−1
〉 ⊗ |ψρn

〉n, (7)

where

QR(ρn−1, ρn|ρn) = ω(ρ̃n−ρ̃n−1)(ρn−ρn,0)

wpn,0(ρn,0 − ρn−1,0 − 1)wp̃n
(ρ̃n − ρn − 1)

×
∏n−2

l=1

∏n−1
k=1 wp

n,k
n−1,l

(ρn−1,l − ρn,k)∏n−2
j,l=1
j �=l

wp
n−1,l
n−1,j

(ρn−1,j − ρn−1,l)

n−2∏
l=1

wpn−1,l
(−ρn−1,l)

wp̃n−1,l
(ρn−1,l)

(8)

is right eigenvector of Bn(λ),

Bn(λ)|
ρn
〉 = λrn,0ω

−ρn,0

n−1∏
k=1

(λ + rn,kω
−ρn,k )|
ρn

〉, (9)

if |
ρn−1
〉 is right eigenvector of Bn−1(λ). The Fermat curve points p̃n, pn,l, p̃n,l , p

n,k
n′,l and

rn,k entering (8) and (9) are related to the parameters of the model as, bs, cs, ds, �s by
equations (54)–(61) of [1], e.g. p̃n,l = (x̃n,l, ỹn,l), x̃n,l = dn/(�ncnrn,l), x

n,k
n−1,l = rn,k/rn−1,l .

For the more involved determination of the rn,l , see section 2.3 of [1].
Analogously, the vector

〈
ρn
| =

∑
ρn−1∈(ZN )n−1

ρn∈ZN

QL(ρn−1, ρn|ρn)〈
ρn−1
| ⊗ n〈ψρn

|, (10)
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where

QL(ρn−1, ρn|ρn) = ω−(ρ̃n−ρ̃n−1)(ρn−ρn,0)+ρ̃n−1−ρn−1,0

n−2∏
j,l=1
j �=l

wp
n−1,l
n−1,j

(ρn−1,j − ρn−1,l − 1)

× wpn,0(ρn,0 − ρn−1,0)wp̃n
(ρ̃n − ρn)∏n−2

l=1

∏n−1
k=1 wp

n,k
n−1,l

(ρn−1,l − ρn,k − 1)

n−2∏
l=1

wp̃n−1,l
(ρn−1,l)

wpn−1,l
(−ρn−1,l)

(11)

is left eigenvector of Bn(λ),

〈
ρn
|Bn(λ) = λrn,0ω

−ρn,0

n−1∏
k=1

(λ + rn,kω
−ρn,k )〈
ρn

|,

if 〈
ρn−1
| is left eigenvector of Bn−1(λ). The definition of QL(ρn−1, ρn|ρn) uses the same

Fermat curve points p̃n, pn,l, p̃n,l , p
n,k
n′,l as were used for the right eigenvectors. The proof of

(11) by induction is lengthy, but analogous to the proof of (8) given in [1].
At λ equal to one of the n − 1 zeros λn,k of the eigenvalue polynomial of Bn(λ)

λn,k = −rn,kω
−ρn,k , k = 1, . . . , n − 1, (12)

the operators An(λn,k) and Dn(λn,k) act as shift operators for the kth component of the vector
ρn,Dn(λn,k) shifting in addition also the zeroth component:

An(λn,k)
∣∣
ρn

〉 = ϕk(ρ
′
n)

∣∣
ρ+k
n

〉
,

〈

ρn

∣∣An(λn,k) = ω−1ϕk

(
ρ′−k

n

)〈

ρ−k

n

∣∣, (13)

Dn(λn,k)
∣∣
ρn

〉 = ϕ̃k(ρ
′
n)

∣∣
ρ+0,−k
n

〉
,

〈

ρn

∣∣Dn(λn,k) = ωϕ̃k

(
ρ′+k

n

)〈

ρ−0,+k

n

∣∣, (14)

where

ϕk(ρ
′
n) = − r̃n−1

rn

ω−ρ̃n+ρn,0Fn(λn,k/ω)

n−2∏
s=1

y
n,k
n−1,s ,

(15)

ϕ̃k(ρ
′
n) = − rn

r̃n−1

ωρ̃n−ρn,0−1∏n−2
s=1 y

n,k
n−1,s

n−1∏
m=1

Fm(λn,k)

and

Fm(λ) = (bm + ωam�mλ)(λcm + dm/�m). (16)

The operator Vn = v1v2 · · · vn, which defines the term of highest degree in λ in An(λ) and the
free term in Dn(λ), shifts the zeroth index of vector ρn:

Vn

∣∣
ρn

〉 = ∣∣
ρ+0
n

〉
,

〈

ρn

∣∣Vn = 〈

ρ−0

n

∣∣. (17)

Using interpolation polynomials and formulae (13), (14) and (17), one can construct how
An(λ) and Dn(λ) act on the left eigenvectors of Bn(λ), analogously to what was done in
equations (66)–(68) of [1] for the right eigenvectors.

3.3. The norms of the eigenvectors of Bn(λ)

The pairing k〈γ ′|γ 〉k = δγ ′,γ implies (we use yk ≡ yR
k = ωyL

k ):

k〈ψρ ′ |ψρ〉k = δρ ′,ρ
N

ω

(
xk

yk

)N−1

. (18)
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Proof. From (4) we get directly

k〈ψρ ′ |ψρ〉k =
∑
γ∈ZN

wpL
k
(γ )ωγ

wpL
k
(γ + ρ − ρ ′ − 1)

since wpR
k
(γ ) = wpL

k
(γ )ωγ . States for ρ ′ �= ρ belong to different eigenvalues in (5) and (6),

so they are ‘orthogonal’ (have vanishing pairing). We then use (3) and

yN

1 − ωγ x
=

N−1∑
γ ′=0

ωγγ ′
xγ ′

,
∑
γ∈ZN

1

1 − ωγ x
= N

yN
, and for

1 � α � N :
∑
γ∈ZN

ωαγ

1 − ωγ x
= N

xN−α

yN
.

(19)

�

Next, we calculate the left–right overlap of the eigenstates of Bn(λ) for general n. We shall
consider only the generic case of parameters such that all the eigenvalues of Bn(λ) are different
(in particular, this is important for the action of An(λ) and Dn(λ) on the eigenvectors of Bn(λ)).
Therefore 〈
ρL

n
|
ρR

n
〉 = 0 if ρL

n �= ρR
n . The following theorem gives the value of 〈
ρL

n
|
ρR

n
〉

(norm) for ρL
n = ρR

n = ρn:

Theorem 1. The norms
〈

ρn

∣∣
ρn

〉
are independent of the phase ρn,0 and their dependence on

ρ′
n = (ρn,1, . . . , ρn,n−1) is given explicitly as〈


ρn

∣∣
ρn

〉 = Cn∏
l<m(λn,l − λn,m)

= Cn∏
l<m(rn,mω−ρn,m − rn,lω−ρn,l )

, (20)

where the normalizing factor Cn is independent of ρn and it is defined recursively by

Cn = Cn−1NnN
n−2

∏
k<k′

(
rN
n,k − rN

n,k′
) ∏

l<l′
(
rN
n−1,l′ − rN

n−1,l

)
∏

k,l

(
rN
n,k − rN

n−1,l

) n−2∏
l=1

rN+1
n−1,l , (21)

C1 and C2 are given by

C1 = N

ω

(
x1

y1

)N−1

, C2 = C1
N3

ω

(
x2

y2ỹ2y2,0

)N−1

and

Nn = N3

ω

(
xn

ynyn,0ỹn

)N−1
(

n−2∏
l=1

∏n−1
k=1 y

n,k
n−1,l∏n−2

j,j �=l y
n−1,j

n−1,l

)
. (22)

Proof. We shall give the proof by establishing an explicit recursion Cn−1 → Cn. For n = 2
there is only a single zero r2,1ω

−ρ2,1 and the denominator in (20) is unity. Similarly, for n = 1
this denominator is unity too as we see from (18).

From (7) and (10) we get〈

ρn

∣∣
ρn

〉 =
∑

ρn−1∈(ZN )n−1

ρn∈ZN

QL(ρn−1, ρn|ρn)Q
R(ρn−1, ρn|ρn)

〈

ρn−1

∣∣
ρn−1

〉
n

〈
ψρn

∣∣ψρn

〉
n
. (23)

Inserting here the explicit expressions (11) for QL, and (8) for QR, using (18), and
performing the summations over ρn−1,0 and ρn by (19) we get

〈

ρn

∣∣
ρn

〉 = Nn

∑
ρ′

n−1∈(ZN )n−2

ωρn−1,1+···+ρn−1,n−2

n−2∏
l=1

(rn−1,lω
−ρn−1,l )2

×
∏n−2

j,j �=l (rn−1,jω
−ρn−1,j − rn−1,lω

−ρn−1,l )∏n−1
k=1(rn−1,lω−ρn−1,l − rn,kω−ρn,k )

〈

ρn−1

∣∣
ρn−1

〉
, (24)
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where we combined several phase-independent factors into the quantity (22). The main issue
now is to perform the summations over the phases ρ′

n−1 explicitly. In order to avoid too many
indices, let us define

a(n) = (a1, . . . , an−2) = (rn−1,1ω
−ρn−1,1 , . . . , rn−1,n−2ω

−ρn−1,n−2);
(25)

b(n) = (b1, . . . , bn−1) = (−λn,1, . . . ,−λn,n−1) = (rn,1ω
−ρn,1 , . . . , rn,n−1ω

−ρn,n−1).

Then using the induction assumption that the formula for the norms is given by (20), the
relation (24) reduces to

Cn∏
l<m(bm − bl)

= Nn

∑
ρn−1,1,...,ρn−1,n−2

n−2∏
l=1

rn−1,lal

∏n−2
j �=l (aj − al)∏n−1
k=1(al − bk)

Cn−1∏n−2
m=l+1(am − al)

= Cn−1Nnr̃
′
n−1Sn(a(n), b(n)), (26)

where we define r̃ ′
n−1 = rn−1,1 . . . rn−1,n−2 and

Sn(a(n), b(n)) =
∑

ρn−1,1,...,ρn−1,n−2∈(ZN )n−2

n−2∏
l=1

(
al

∏n−2
j=l+1(al − aj )∏n−1
k=1 (al − bk)

)
. (27)

In the appendix, we prove the following identity:

Sn(a(n), b(n)) = Nn−2

(
n−2∏
l=1

aN
l

)
n−1∏
k<k′

bN
k − bN

k′

bk − bk′

∏n−2
l<l′

(
aN

l − aN
l′

)
∏n−1

l=1

∏n−2
l′=1

(
bN

l − aN
l′

) . (28)

The (ZN)n−2-summation in (27) runs over the discrete phases of the variables a(n). From
the ZN -symmetry the result of this summation (28) can depend only on the Nth powers
of these variables. Substituting (28) into (26), and using the notation (25), we get the
recursion (21). �

3.4. Action of un on Bn(λ)-eigenvectors

Now we shall calculate an explicit expression for the action of un on the Bn(λ)-eigenvectors
|
ρn

〉. From the relation

u−1
n (an − bnvn)

∣∣ψρn

〉
n

= rnω
−ρn

∣∣ψρn

〉
n
,

taking into account an/rn = 1/xn, bn/rn = yn/xn, we get the formula for the action of un on
one-site eigenvectors:

un

∣∣ψρn

〉
n

= ωρn

(
1

xn

∣∣ψρn

〉
n
− yn

xn

∣∣ψρn+1
〉
n

)
. (29)

We use this formula to obtain the action of un on general eigenvectors of Bn(λ), which, in
particular, will show that most matrix elements of un between eigenvectors of Bn(λ) vanish.

Theorem 2. The action of un on eigenvectors of Bn(λ) is given by

un

∣∣
ρn

〉 = ωρ̃n
x̃n

xn

∣∣
ρn

〉 − ωρn,0
yn,0yn

xn

∣∣
ρ+0
n

〉
+

n−1∑
k=1

ωρn,0−ρ̃ ′
n

(
ỹnr̃n

ω−ρn,k rn,krn,0xn

− xn,0r̃n−1yn

ωrn−1,0xn

)

×
∏n−2

l=1 y
n,k
n−1,l∏

s �=k(−rn,kω−ρn,k + rn,sω−ρn,s )

∣∣
ρ+k
n

〉
. (30)



14124 G von Gehlen et al

Proof. To prove (30) we use (7), (30) and rewrite (30) as a relation for QR(ρn−1, ρn|ρn). The
terms of the resulting relation can be separated into two groups, giving two relations which
can be proved independently:

ωρn = ωρ̃n x̃n +
n−1∑
k=1

ωρn,0−ρ̃ ′
n ỹnr̃n

rn,kω−ρn,k rn,0

∏n−2
l=1 y

n,k
n−1,l∏

s �=k(−rn,kω−ρn,k + rn,sω−ρn,s )

QR
(
ρn−1, ρn

∣∣ρ+k
n

)
QR(ρn−1, ρn|ρn)

(31)

and

ωρn−1 QR(ρn−1, ρn − 1|ρn)

QR(ρn−1, ρn|ρn)
= ωρn,0yn,0

QR
(
ρn−1, ρn|ρ+0

n

)
QR(ρn−1, ρn|ρn)

+
n−1∑
k=1

ωρn,0−ρ̃ ′
n−1 xn,0r̃n−1

rn−1,0

×
∏n−2

l=1 y
n,k
n−1,l∏

s �=k(−rn,kω−ρn,k + rn,sω−ρn,s )

QR
(
ρn−1, ρn|ρ+k

n

)
QR(ρn−1, ρn|ρn)

. (32)

In order to verify both (31) and (32) we start evaluating the ratios of the QR using the explicit
formula (8), e.g.,

QR
(
ρn−1, ρn|ρ+k

n

)
QR(ρn−1, ρn|ρn)

= ωρn−ρn,0
1 − ωρ̃n−ρn x̃n

ỹn

n−2∏
l=1

rn−1,lω
−ρn−1,l − rn,kω

−ρn,k

rn−1,lω−ρn−1,l y
n,k
n−1,l

, (33)

since in (33) the shift ρ+k
n affects only three terms in (8), and we use (3) and x

n,k
n−1,l = rn,k/rn−1,l .

For (31), inserting (33), and after some cancellations, collecting the k-dependent terms, the
sum over k can be performed using the identity

n−1∑
k=1

∏n−2
l=1 (ξk − ζl)

ξk

∏n−1
s=1,s �=k(ξk − ξs)

=
∏n−2

l=1 ζl∏n−1
k=1 ξk

, ξk = −rn,kω
−ρn,k , ζl = −rn−1,lω

−ρn−1,l .

(34)

For verifying (32) we have to calculate the other shifts of QR too. This time, with the same ξk

and ζl as before, we perform the sum over k using the identity

n−1∑
k=1

∏n−2
l=1 (ξk − ζl)∏n−1

s=1,s �=k(ξk − ξs)
= 1.

�

4. Periodic model: Baxter equation

To treat the periodic model it is convenient to make a Fourier transform over ρn,0 of the
eigenvectors of Bn(λ). This yields a basis of eigenvectors of the operator Vn of (17):〈


̃ρ,ρ′
n

∣∣ = ∑
ρn,0∈ZN

ωρ·ρn,0
〈

ρn

∣∣, ∣∣
̃ρ,ρ′
n

〉 = ∑
ρn,0∈ZN

ω−ρ·ρn,0
∣∣
ρn

〉
,

(35)〈

̃ρ,ρ′

n

∣∣Vn = ωρ
〈

̃ρ,ρ′

n

∣∣, Vn

∣∣
̃ρ,ρ′
n

〉 = ωρ
∣∣
̃ρ,ρ′

n

〉
.

Vn is the total ZN -spin rotation operator and ρ ∈ ZN is the corresponding total charge.
Let 〈�ρ,E| and |�ρ,E〉 be left and right eigenvectors of tn(λ) with eigenvalue

tn(λ|ρ, E) = E0 + E1λ + · · · + En−1λ
n−1 + Enλ

n, (36)

where E = {E1, . . . , En−1} and the values of E0 and En are

E0 = 1 + ωρ

n∏
m=1

bmdm

�m

, En =
n∏

m=1

amcm + ωρ

n∏
m=1

�m. (37)
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Following the general procedure of the SoV method, we express these eigenvectors as

〈�ρ,E| =
∑
ρ′

n

QL(ρ′
n|ρ, E)

〈

̃ρ,ρ′

n

∣∣, |�ρ,E〉 =
∑
ρ′

n

QR(ρ′
n|ρ, E)

∣∣
̃ρ,ρ′
n

〉
, (38)

where5

QL(ρ′
n|ρ, E) =

n−1∏
k=1

QL
k (ρn,k)

∏
s,s ′=1
s �=s ′n−1

w
p

n,s′
n,s

(ρn,s − ρn,s ′ − 1), (39)

QR(ρ′
n|ρ, E) =

∏n−1
k=1 QR

k (ρn,k)∏n−1
s,s ′=1
s �=s ′

w
p

n,s′
n,s

(ρn,s − ρn,s ′)
. (40)

The products of ZN -cyclic functions w
p

n,s′
n,s

(ρn,s −ρn,s ′) in (39) and (40) are Sklyanin’s measure

which makes the rest of the kernels QL(ρ′
n|ρ, E) and QR(ρ′

n|ρ, E) factorizable into products
of single variable functions (SoV). The Baxter equations for these functions of separated
variables are

tn(λn,k|ρ, E)QL
k (ρn,k) = ωn−1�−

k (λn,k)Q
L
k (ρn,k + 1) + ω1−n�+

k (ωλn,k)Q
L
k (ρn,k − 1), (41)

tn(λn,k|ρ, E)QR
k (ρn,k) = �+

k (λn,k)Q
R
k (ρn,k + 1) + �−

k (ωλn,k)Q
R
k (ρn,k − 1), (42)

where λn,k = −rn,kω
−ρn,k , k = 1, . . . , n − 1 are the zeros of the eigenvalue polynomial of

Bn(λ), see (12), and

�+
k (λ) = (ωρ/χk)(λ/ω)1−n

n−1∏
m=1

Fm(λ/ω), �−
k (λ) = χk(λ/ω)n−1Fn(λ/ω),

χk = rn,0r̃n−1

rnr̃n

⎛
⎜⎝n−1∏

s=1
s �=k

y
n,s
n,k

/
yn,k

n,s

⎞
⎟⎠ n−2∏

s=1

y
n,k
n−1,s .

(43)

5. Periodic BBS model for N = 2

5.1. Eigenvalues of the transfer matrix for the generalized homogeneous Ising model

In this section, we consider in more detail the case of the N = 2 periodic homogeneous BBS
model, where ω = −1. By homogeneous we mean that the parameters a, b, c, d and � each
are taken to be independent of the site index. As it was shown in [10] this model is a particular
case (‘free fermion point’) of the generalized Ising model.

In the N = 2 case, we have uk = σ z
k and vk = σx

k , where σ z
k and σx

k are Pauli matrices
acting on the spin at the kth site. The operator Vn = σx

1 σx
2 · · · σx

n is the spin-flip operator.
It commutes with the transfer matrix tn(λ), and we have simply V2

n = 1. Therefore, the
eigenvectors of tn(λ) are divided into two sectors according to the eigenvalue (−1)ρ, ρ ∈ {0, 1}
of Vn. If the parameters a, b, c, d and � are generic, no degeneracies of the eigenvalues occur.
The transfer matrix of the standard Ising model on the finite lattice can be obtained from the

5 The kernels in (38)–(40) are not the kernels (8) and (11) used in the recursive definitions of the left and right
eigenvectors of Bn(λ), observe the different types of arguments.
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N = 2 BBS integrals of motion Hk, k = 0, 1, . . . , n, when the parameters of the homogeneous
N = 2 BBS model satisfy the relations

a = c, d = b, � = 1 and λ = b/a (44)

(see section 6.1). In this case, degenerations of the spectra occur and in order to distinguish the
corresponding eigenvectors one has to use an additional operator which commutes with the
transfer matrix. In case of the periodic model, such an operator is the operator of translation
by one site:

T|γ1〉1 ⊗ |γ2〉2 ⊗ · · · ⊗ |γn〉n = |γn〉1 ⊗ |γ1〉2 ⊗ · · · ⊗ |γn−1〉n,
Tσ

z,x
k T−1 = σ

z,x
k+1, [T, tn(λ)] = 0, [T, Vn] = 0.

Our construction of the eigenvectors (38) is obviously non-invariant with respect to translations
and we were not able to show that the vectors (38) are also eigenvectors of T. A translational
invariant description of the eigenvectors for the generalized Ising model has been given in
[18]. The description of the spectra of the transfer matrix given in this paper coincides with
the description of the eigenvalues obtained in our formalism presented in [1]. This allows us
to identify the eigenvectors in both descriptions. In particular, the eigenvectors are labelled by
quasi-momenta of the excitations q = ± 2π

n
m, where m is integer or half-integer depending the

eigenvalue (−1)ρ of Vn. So the whole space of states decomposes into two sectors according
to the value of ρ:

• NS-sector: ρ = 0, the eigenstates of tn have an even number of excitations with quasi-
momenta q ∈ NS ≡ {

2π
n

(Zn + 1/2)
}
. The dimension of this sector is 2n−1.

• R-sector: ρ = 1, the eigenstates of tn have an odd number of excitations with quasi-
momenta q ∈ R ≡ {

2π
n

Zn

}
. The dimension of this sector is also 2n−1.

In [1] the eigenvalues t (λ) (we suppress the chain-length index n) were derived from a
functional equation which could be written in the form (do not confuse these A(q) etc with
the An(λ) etc in (2)):

t (λ)t (−λ) = (−1)n
∏

q

(A(q)λ2 − C(q) + 2iλB(q)), (45)

where

A(q) = a2c2 − 2�ac cos q + �2, B(q) = (ad − bc) sin q,
(46)

C(q) = 1 − 2(bd/�) cos q + b2d2/�2.

Solving (45), the 2n eigenvalues corresponding to the NS- and R-sectors are given by (47)
[1, 10, 18], where we have to choose all possible sets of ± signs (which we write (−1)σq with
σq ∈ {0, 1}):

NS : t (λ) = (ancn + �n)
∏

q∈ NS

(
λ + (−1)σqsq

)
,

∏
q∈ NS

(−1)σq = +1,

R : t (λ) = (ancn − �n)
∏
q∈ R

(
λ + (−1)σqsq

)
,

∏
q∈ R

(−1)σq = −1,
(47)

the restriction on the signs follows from (35). We shall also write λq = (−1)σqsq, and the
amplitudes sq are given by

sq = (
√

D(q) − iB(q))/A(q), D(q) = A(q)C(q) − B(q)2. (48)

The convention which fixes the sign of
√

D(q) is given in (120) and (121) of [1]. States which
have eigenvalues where in (47) there are some minus signs (−1)σq = −1 are said to have
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excitations with quasi-momenta q. The restriction on the signs means that for the NS (R)
sector the number of excitations, i.e. the number of minus signs, must be even (odd).

As an example, the 23 eigenstates and eigenvalues for the 3-site chain (n = 3) are

• NS-sector (ρ = 0):

|〉NS (no excitations) → t (λ) = (a3c3 + �3)(λ + sπ/3)(λ + s−π/3)(λ + sπ ),

|±π/3, π〉NS,→ t (λ) = (a3c3 + �3)(λ ∓ sπ/3)(λ ± s−π/3)(λ − sπ ),

|π/3,−π/3〉NS,→ t (λ) = (a3c3 + �3)(λ − sπ/3)(λ − s−π/3)(λ + sπ ).

• R-sector (ρ = 1):

|0〉R → t (λ) = (a3c3 − �3)(λ + s2π/3)(λ + s−2π/3)(λ − s0),

|±2π/3〉R → t (λ) = (a3c3 − �3)(λ ∓ s2π/3)(λ ± s−2π/3)(λ + s0),

|0, 2π/3,−2π/3〉R → t (λ) = (a3c3 − �3)(λ − s2π/3)(λ − s−2π/3)(λ − s0).

From [18], it follows that the action of operator of translation T on the eigenstates gives
eigenvalues of the form eiP , where P is the sum of the quasi-momenta of all excitations of the
given state. In case of the Ising model when ad = bc and B(q) ≡ 0 we have sq = s−q: two
states which have excitations with quasi-momenta q and −q have the same eigenvalues but
can be distinguished by the eigenvalue of T.

The eigenvalues of tn(λ) provide the existence of non-trivial solutions of the systems (41)
and (42) of the homogeneous Baxter equations. These solutions give explicit formulae (38)
for the eigenvectors, which form a basis in the space of states of the periodic BBS model for
N = 2.

5.2. Norms and orthogonality of the eigenvectors of the periodic N = 2 BBS model

Let us fix an eigenvalue polynomial t (λ) of An(λ)+Dn(λ) corresponding to a right eigenvector
from the sector ρ. In order to find this eigenvector explicitly we have to solve the associated
n − 1 systems (k = 1, 2, . . . , n − 1) of the Baxter equations

t (−rn,k)Q
R
k (0) = (

�+
k (−rn,k) + �−

k (rn,k)
)
QR

k (1),
(49)

t (rn,k)Q
R
k (1) = (

�+
k (rn,k) + �−

k (−rn,k)
)
QR

k (0).

Since t (λ) is eigenvalue polynomial, it satisfies the functional relation. In [1], it was shown that
the functional relation (45) ensures the existence of non-trivial solutions to (49) with respect
to the unknown variables QR

k (0) and QR
k (1) for every k = 1, 2, . . . , n − 1. In the N = 2

case, this means that for every k we have one (in the case of degenerate eigenvalues, possibly
zero) independent linear equation. In the case of generic parameters, both hand sides of each
equation are nonzero. So we may fix QR

k (0) = 16 and obtain two equivalent expressions for
QR

k (1):

QR
k (1) = t (−rn,k)

�+
k (−rn,k) + �−

k (rn,k)
= �+

k (rn,k) + �−
k (−rn,k)

t (rn,k)
.

Similarly, for the left eigenvector we have

t (−rn,k)Q
L
k (0) = (−1)n−1 (

�+
k (rn,k) + �−

k (−rn,k)
)
QL

k (1),
(50)

t (rn,k)Q
L
k (1) = (−1)n−1

(
�+

k (−rn,k) + �−
k (rn,k)

)
QL

k (0).

6 When the parameters satisfy the Ising model restrictions, it is not always possible to choose such normalization.
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Fixing QL
k (0) = 1 we obtain

QL
k (1) = (−1)n−1t (−rn,k)

�+
k (rn,k) + �−

k (−rn,k)
= �+

k (−rn,k) + �−
k (rn,k)

(−1)n−1t (rn,k)
.

Since for generic parameter values we shall have t (rn,k) �= 0, these explicit formulae give
immediately

QL
k (ρn,k)Q

R
k (ρn,k) = (−1)ρn,k(n−1)t ((−1)ρn,k rn,k)/t (rn,k).

Eigenvectors in the periodic case are defined by the formula (38). In the case N = 2, we
have a simple inversion relation for the cyclic function wp(ρ): wp(ρ)wp(ρ − 1) = y/(1 + x).
This allows us to use instead of (39) the following kernel:

QL(ρ′
n|ρ, E) =

∏n−1
k=1 QL

k (ρn,k)∏n−1
s,s ′=1
s �=s ′

w
p

n,s′
n,s

(ρn,s − ρn,s ′)
. (51)

Up to a coefficient, (51) with (38) gives the same eigenvectors of An(λ) + Dn(λ) as (39). In
what follows we shall use only (51). The pairing of 〈�| and |�〉, which are left and right
eigenvectors corresponding to the eigenvalue t (λ), gives (we will use the normalization by
〈
̃0,0|
̃0,0〉 to get rid of unimportant factors appearing in the formula for the norms)

〈�|�〉
〈
̃0,0|
̃0,0〉

=
∑
ρ′

n

∏n−1
k=1 QL

k (ρn,k)Q
R
k (ρn,k)∏n−1

l<m

(
wp

n,m
n,l

(ρn,l − ρn,m)wp
n,l
n,m

(ρn,m − ρn,l)
)2

〈
̃ρ,ρ′
n
|
̃ρ,ρ′

n
〉

〈
̃0,0|
̃0,0〉
,

where for the norm we have used (20) which leads to〈

̃ρ,ρ′

n

∣∣
̃ρ,ρ′
n

〉
〈
̃0,0|
̃0,0〉

=
∏n−1

l<m(rn,m(−1)ρn,m + rn,l(−1)ρn,l )∏n−1
l<m(rn,m + rn,l)

, (52)

where 0 = (0, 0, . . . , 0) has n − 1 components. In the N = 2 case we have

wp(1) = y

1 + x
= 1 − x

y
,

1

(wp(1))2
= 1 + x

1 − x
.

Therefore for the Fermat point p
n,m
n,l = (

x
n,m
n,l , y

n,m
n,l

)
with coordinate x

n,m
n,l = rn,m/rn,l , we have

(
wp

n,m
n,l

(ρn,l − ρn,m)
)−2 = (−1)ρn,l

(rn,l + rn,m)

(−1)ρn,l rn,l + (−1)ρn,mrn,m

and so

1(
wp

n,m
n,l

(ρn,l − ρn,m)wp
n,l
n,m

(ρn,m − ρn,l)
)2 = (−1)ρn,l+ρn,m

(rn,l + rn,m)2

((−1)ρn,l rn,l + (−1)ρn,mrn,m)2
.

Combining all these formulae we get for the left–right overlap of the transfer matrix
eigenvectors of the periodic BBS model at N = 2:

〈�|�〉
〈
̃0,0|
̃0,0〉

=
∏n−1

l<m(rn,m + rn,l)∏n−1
l=1 t (rn,l)

∑
ρ′

n

∏n−1
l=1 (−1)ρn,l t ((−1)ρn,l rn,l)∏n−1

l<m((−1)ρn,mrn,m + (−1)ρn,l rn,l)
. (53)

Using the same techniques as we used for calculating the norm in the auxiliary problem,
we are now able to perform the summations in (53) explicitly: we write the polynomial t (λ),
equations (36), (47), as

t (λ) = �

n∏
k=1

(λ + µk), (54)
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where � = ancn + (−1)ρ�n and µk = λq with q = 2π
n

(
k + 1−ρ

2

)
. Then the sum in (53) is

�n−1
∑
ρ′

n

n−1∏
l=1

(−)ρn,l

∏n
k=1((−)ρn,l rn,l + µk)∏n−1

j=l+1((−)ρn,j rn,j + (−)ρn,l rn,l)

= �n−1

r̃ ′
n

n−1∏
l=1

∏n
k=1

(
r2
n,l − µ2

k

)
∏n−1

m=l+1

(
r2
n,m − r2

n,l

) ∑
ρ′

n

n−1∏
l=1

(−)ρn,l rn,l

∏n−1
j=l+1((−)ρn,j rn,j − (−)ρn,l rn,l)∏n

k=1(rn,l(−)ρn,l − µk)

= �n−1
n−1∏
l=1

∏n
k=1

(
r2
n,l − µ2

k

)
∏n−1

m=l+1

(
r2
n,m − r2

n,l

)2n−1r̃ ′
n

∏
k<k′

µ2
k − µ2

k′

µk − µk′

∏n−1
l<l′

(
r2
n,l − r2

n,l′
)

∏n
l=1

∏n−1
l′=1

(
µ2

l − r2
n,l′

)
= �n−12n−1r̃ ′

n

∏
k<k′

(µk + µk′), r̃ ′
n = rn,1rn,2 . . . rn,n−1. (55)

In the second line the sum takes just the form (A.4) which we had for Sn+1 with N = 2 and
a(n+1) = (rn,1(−)ρn,1 , . . . , rn,n−1(−)ρn,n−1) and b(n+1) = (µ1, . . . , µn). In the last two lines we
have used the result (A.5) for Sn+1 derived in the appendix. So we obtain the norm of the
general periodic state vector

〈�|�〉
〈
̃0,0|
̃0,0〉

= 2n−1r̃ ′
n

∏n−1
l<m(rn,m + rn,l)∏n

k=1

∏n−1
l=1 (rn,l + µk)

n∏
i<j

(µi + µj). (56)

If the spectrum of the model is not degenerate, the overlap of the eigenvectors
corresponding to different eigenvalues is zero. In case of degeneration, as it happens in
the case of the parameterization a = c, b = d and � = 1, corresponding to the Ising model,
one should be careful in using (56). In section 6 this case will be discussed in detail.

Let us note that the formula (56) is also valid for the inhomogenus model, where the µk

are defined as the roots of the polynomials (36) and (54).

5.3. Matrix elements between eigenvectors of the periodic N = 2 BBS model

In theorem 2, we found the action of un on an eigenvector |
ρn
〉 of Bn(λ): the result is a linear

combination of the original vector plus a sum of vectors which each have one component of
ρn raised. In order to get the matrix elements of un in the periodic model, we first obtain the
matrix elements between Fourier transformed eigenvectors of Bn(λ) defined in (35)〈


̃ρ,ρ′
n

∣∣ = 〈

0,ρ′

n

∣∣ + (−)ρ
〈

1,ρ′

n

∣∣, ∣∣
̃ρ,ρ′
n

〉 = ∣∣
0,ρ′
n

〉
+ (−)ρ

∣∣
1,ρ′
n

〉
.

Using (30), the following n-site matrix elements of un are nonzero (the following equations,
including (58), are written to be valid for the inhomogenous case too):〈

̃1,ρ′

n

∣∣un

∣∣
̃0,ρ′
n

〉
〈

̃0,ρ′

n

∣∣
̃0,ρ′
n

〉 = x̃n

xn

(−1)ρ̃
′
n +

yn,0yn

xn

= an

r̃n

(−1)ρ̃
′
n +

�1�2 · · · �n−1bn

rn,0
,

〈

̃0,ρ′

n

∣∣un

∣∣
̃1,ρ′
n

〉
〈

̃0,ρ′

n

∣∣
̃0,ρ′
n

〉 = x̃n

xn

(−1)ρ̃
′
n − yn,0yn

xn

= an

r̃n

(−1)ρ̃
′
n − �1�2 · · · �n−1bn

rn,0
,

〈

̃1,ρ′+k

n

∣∣un

∣∣
̃0,ρ′
n

〉
〈

̃0,ρ′

n

∣∣
̃0,ρ′
n

〉 =
〈

̃0,ρ′+k

n

∣∣un

∣∣
̃1,ρ′
n

〉
〈

̃0,ρ′

n

∣∣
̃0,ρ′
n

〉

= (−1)ρ̃
′
n
r̃n−1anbncn

rnrn,0

(
1 +

(−1)ρn,k dn

�ncnrn,k

) ∏n−2
l=1 y

n,k
n−1,l∏

s �=k(rn,k(−1)ρn,k + rn,s(−1)ρn,s )
,

(57)
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where ρ̃ ′
n = ρn,1 + ρn,2 + · · · + ρn,n−1. Note, since un anti-commutes with Vn, all matrix

elements of un between the vectors from the same sector ρ are zero.
Then by (38) we pass to periodic eigenstates transforming by the solutions Q of the Baxter

equations. Let 〈�0| be a left eigenvector of the transfer matrix tn(λ) with ρ = 0 and |�1〉 be
a right eigenvector with ρ = 1. Let Q

L(0)
k (ρn,k) and Q

R(1)
k (ρn,k) be the solutions of Baxter

equation corresponding to these two eigenvectors. Then for the matrix element after some
simplification we have

〈�0|un|�1〉
〈
̃0,0|
̃0,0〉

=
∑
ρ′

n

(−1)nρ̃ ′
n

n−1∏
l<m

rn,l + rn,m

(−1)ρn,l rn,l + (−1)ρn,mrn,m

×
(

n−1∏
l=1

Q
L(0)
l (ρn,l)Q

R(1)
l (ρn,l)

(
an

r̃n

(−1)ρ̃
′
n − �1�2 · · · �n−1bn

rn,0

)

+
n−1∑
k=1

Q
L(0)
k (ρn,k + 1)Q

R(1)
k (ρn,k)

n−1∏
l �=k

Q
L(0)
l (ρn,l)Q

R(1)
l (ρn,l)

× rn−1
n,k χk(−1)(n−1)ρn,k

anbncn

rn,0

(
1 +

(−1)ρn,k dn

�ncnrn,k

)

× 1∏
s �=k(rn,k(−1)ρn,k − rn,s(−1)ρn,s )

)
. (58)

The product on the right-hand side of the first line comes from the change of normalization
from (57) to (58) by the factor 〈
̃0,ρ′ |
̃0,ρ′ 〉/〈
̃0,0|
̃0,0〉, which can simply be read off from
(20) with Cn cancelling.

We have not yet been able to perform the summation over ρ′
n in (58) for general parameters

of the BBS model. However, for the homogeneous Ising case (44), we can show that (58) can
be put into a fully factorized form, although in this case special complications appear from
the coincidence of the zeros of the transfer matrix with the polynomial zeros of Bn(λ). In
the following section, we give the result of this summation, which proves a formula for the
matrix elements of the spin operator (form-factors) on a finite lattice conjectured by Bugrij
and Lisovyy in [14, 15]. Details of the proof which is a new result for the Ising model and the
comparison with the notation of [14, 15] are relegated to the sequel paper [16].

6. The homogeneous Ising model

6.1. Relation to the standard Ising model

In this section, we restrict the parameters of the homogeneous N = 2 BBS model to be
a = c, b = d and � = 1. So the cyclic L-operator (1) reduces to

Lk(λ) =
(

1 + λvk λuk(a − bvk)

uk(a − bvk) λa2 + vkb
2

)
. (59)

Let us make the special choice of the spectral parameter λ = b/a as in (44). Then the
L-operator degenerates and we get

Lk(b/a) = (1 + vkb/a)

(
1 buk

auk ab

)
= (1 + vkb/a)

(
1

auk

)
(1, buk). (60)

At this point the transfer matrix is

tn(b/a) = tr L1(b/a)L2(b/a) · · · Ln(b/a) =
n∏

k=1

(1 + vk · b/a) ·
n∏

k=1

(1 + ukuk+1 · ab). (61)
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Recall that due to the periodic boundary conditions un+k ≡ uk . Using

exp(Kxukuk+1) = cosh Kx(1 + ukuk+1 tanh Kx), exp(K∗
x vk) = cosh K∗

x (1 + vk tanh K∗
x ),

and writing uk = σ z
k and vk = σx

k , it is easy to identify tn(b/a) with the standard Ising transfer
matrix

tIsing = exp

(
n∑

k=1

K∗
x σ x

k

)
exp

(
n∑

k=1

Kxσ
z
k σ z

k+1

)
,

e−2Ky = tanh K∗
x = b

a
, tanh Kx = ab,

where Kx,y and K∗
x,y are coupling constants of the Ising and dual Ising models on the square

lattice along the X and Y axes, respectively.
The eigenvectors are obtained by the method of separation of variables, they do not

depend on λ. In what follows we shall not fix λ = b/a and so we consider a family of
models depending on λ, a and b. This family includes the Ising model at λ = b/a and the
eigenvectors obtained by SoV are eigenvectors of the Ising transfer matrix too. Let us note that
this L-operator formulation can be extended [10] to a larger family of Ising-like models, giving
a possibility to use SoV for finding explicit formulae for the eigenvectors of the corresponding
transfer matrices.

In (45) and (47) from [1], we already quoted the functional equation and the eigenvalues
of the general homogeneous N = 2 BBS model. Introducing

G(λ2) = 1 + b2d2/�2 − λ2(�2 + a2c2), F (λ) = (b − a�λ) (λc + d/�) , (62)

the equation A(q)S2
q − C(q) + 2iSqB(q) = 0 can be written as

G
(
s2

q

) = eiqF(sq) + e−iqF(−sq). (63)

The solution of (63) is given by (48) where q = ±π
n
m, with m even for the R-sector (ρ = 1)

and m odd for the NS-sector (ρ = 0).
The equations for the amplitudes rn,k of the roots of the eigenvalue polynomial of the

operator Bn(λ) of equation (9) were derived in equation (A7) of [1]7:

G
(
r2
n,k

)2 = 4 cos2(qn,k)F (rn,k)F (−rn,k), qn,k = πk/n, k = 1, 2, . . . , n − 1.

(64)

In the case of the Ising model parameterization (44) we have F(λ) = b2 − a2λ2, and (63)
and (64) reduce to G

(
s2

q

) = 2 cos(q)F (sq) and G
(
r2
n,k

)2 = 4 cos2(qn,k)F
2(rn,k), respectively.

Then the solutions of these equations are

sq =
√

b4 − 2b2 cos q + 1

a4 − 2a2 cos q + 1
, rn,k =

√
b4 − 2b2 cos qn,k + 1

a4 − 2a2 cos qn,k + 1
, (65)

where the momentum q in both NS- and R-sectors takes the values {0, π,±qn,k} with
0 < qn,k < π . So we have

rn,k = sqn,k
= s−qn,k

, s0 = b2 − 1

a2 − 1
, sπ = b2 + 1

a2 + 1
. (66)

The possible coincidence in the Ising case of the two quite different parameters: the
zeros rn,k of the polynomial Bn(λ) and the zeros sq of the transfer matrix will create some
peculiarities when in the following we set out to solve the Baxter equations.

7 In [1] we used φn,k/2 instead of qn,k .
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6.2. Solution of the Baxter equations

We have seen that in the Ising case (44) the eigenvectors and eigenvalues of tn(λ) decompose
into two sectors ρ = 0, 1. With (44) in addition we have also F(λ) = F(−λ) and the Baxter
equations (41) and (42) for left and right kernels become identical. Omitting the superscripts
L and R on Qk and writing λn,k = −(−1)ρn,k rn,k, ρn,k = 0, 1 we obtain

t (λn,k)Qk(ρn,k) =
(

(−1)ρF n−1(λn,k)

(λn,k)n−1χk

+ (−λn,k)
n−1χkF (λn,k)

)
Qk(ρn,k + 1). (67)

In order to solve these Baxter equations for a given sector ρ, we need t (±rn,k). Now from
(47) we have

t (λ) = (a2n + (−1)ρ)
∏

q(λ + λq), λq = (−1)σqsq, (68)

and we see that t (±rn,k) vanishes if λq = ∓rn,k . When ρ and k have the same parity
(−)ρ = (−)k the quasi-momenta q which describe the spectrum λq of the transfer matrix do
not coincide with any qn,k and the value of the transfer matrix t (±rn,k) does not vanish. If
ρ and k have different parities: (−)ρ = (−)k+1 this can happen. Below, when we solve the
Baxter equations we shall treat these cases separately.

Moreover, as we can see from (66), for the Ising parameterization the amplitudes
sqn,k

= s−qn,k
coincide. This leads to a degeneracy of eigenvalues of tn(λ): an eigenstate with

q = qn,k excited and q = −qn,k not excited has the same eigenvalues as the eigenstate with
−qn,k excited and qn,k not excited: both have the same factor

(
λ2 − s2

qn,k

)
in the eigenvalue

polynomial. The degeneracy of eigenvalues of the transfer matrix can lead potentially to the
following problem: the functional relation guarantees, of course, the existence of a non-trivial
solution of the Baxter equations for any particular eigenvalue polynomial, but we need in our
case two independent solutions. Fortunately, due to the coincidence sq=±qn,k

= rn,k both sides
of the Baxter equations for the unknowns Qk(0) and Qk(1) become zero and we can build a
two-dimensional solutions space.

The compatibility condition following from (67) is

t (−rn,k)t (rn,k) = (−1)n−1

(
(−1)ρF n−1(rn,k)

(rn,k)n−1χk

+ (−rn,k)
n−1χkF (rn,k)

)2

,

where t (λ) is an eigenvalue from the sector ρ. If k is such that (−1)k = (−1)ρ+1, then the quasi-
momentum q = qn,k belongs to the sector ρ and for rn,k = sqn,k

we have t (−rn,k)t (rn,k) = 0.
This implies a relation not depending on a particular t (λ) and its ρ:

χ2
k r

2(n−1)
n,k = (−1)n+k+1Fn−2(rn,k). (69)

In order to find the eigenvector corresponding to t (λ) from the sector ρ we have to find
all the Qk(ρn,k) for all k solving the Baxter equations. We need to distinguish the following
four cases with respect to the value k:

(i) (−1)ρ = (−1)k: in this case both t (rn,k) �= 0 and t (−rn,k) �= 0. So we may fix
Qk(0) = 1, and using (69) we obtain

Qk(1) = (−1)n−1t (−rn,k)

2χkr
n−1
n,k F (rn,k)

.

The other three cases correspond to (−1)ρ = (−1)k−1 so that the big brackets on the
right-hand sides of the Baxter equations are zero due to (69).

(ii) t (rn,k) �= 0, t (−rn,k) = 0: the eigenvalue polynomial t (λ) contains the factor (λ + rn,k)
2

(both momenta q = ±qn,k are not excited, i.e. both not in the spectrum) and we have

Qk(0) = 1, Qk(1) = 0.
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(iii) t (rn,k) = 0, t (−rn,k) �= 0: t (λ) contains the factor (λ − rn,k)
2 (both momenta q = ±qn,k

are excited) and we have8

Qk(0) = 0, Qk(1) = 1.

(iv) Both t (rn,k) = 0 and t (−rn,k) = 0: this case happens when only one of the two
quasi-momenta q = ±qn,k is excited, so that t (λ) contains a factor

(
λ2 − r2

n,k

)
. As we

explained above, this eigenvalue is degenerate. In this case, both hand sides of both
Baxter equations are zero. In principle, we can choose any two independent solutions
for the Baxter equations, but, in general, they will not give us eigenvectors of operator of
translation T. Since our construction of the eigenvectors (38) is obviously non-invariant
with respect to translations it is unclear how using the direct action of T one can choose
solutions of the Baxter equations which give such eigenvectors. We take another way,
in order to obtain eigenvectors of the transfer matrix which are eigenvectors also of the
translation operator, we shall first lift the degeneracy by starting with parameters such
that ad − bc = η (keeping � = 1) with η small but finite. At the end we shall take the
limit η → 0. Observe that for η �= 0 (49) and (50) are different. From (49) we get

QR
k (0) = 1, QR

k (1) = t (−rn,k)

(−1)ρ/(χk(rn,k)n−1)F n−1(rn,k) + (−1)n−1χk(rn,k)n−1F(−rn,k)
.

When η → 0, both numerator and denominator of QR
k (1) tend to 0. Let us find their

leading (in fact, linear) terms in η → 0. For the denominator we have for η → 0

(−1)ρF n−1(rn,k)

χk(rn,k)n−1
+ (−1)n−1χk(rn,k)

n−1F(−rn,k) ∼ η(−1)n+1nrn,kχk(rn,k)
n−1,

where we used the relation (valid for arbitrary η)

Fn−2(rn,k)F
n−2(−rn,k) = χ4

k r
4(n−1)
n,k .

Let us write the transfer-matrix eigenvalue polynomial (68) as

t (λ) = tq̌k
(λ)

(
λ − sq̌k

)(
λ + s−q̌k

)
,

where q̌k = (−1)σqn,k+1qn,k is the value of the excited quasi-momentum, so that

t (−rn,k) = tq̌k
(−rn,k)

(
rn,k − s−q̌k

)(
rn,k + sq̌k

)
.

Using A(q)(λ − s−q)(λ + sq) = A(q)λ2 − C(q) − 2iB(q)λ, B(q) = η sin q and A(q̌k)r
2
n,k −

C(q̌k) ∼ o(η) (due to (46) and (48) at η → 0) we get

t (−rn,k) ∼ −tq̌k
(−rn,k)2iB(q̌k)rn,k/A(q̌k) = −tq̌k

(−rn,k)2i sin(q̌k)rn,kη/A(q̌k)

at η → 0, where A(q) = a4 − 2a2 cos q + 1. Finally,

QR
k (0) = 1, QR

k (1) = (−1)n+σqn,k
+12i sin(qn,k)tq̌k

(−rn,k)

nχkr
n−1
n,k A(qn,k)

.

Using a similar limiting procedure for the Baxter equation (50) we get

QL
k (0) = 1, QL

k (1) = −QR
k (1).

8 In this case, we cannot normalize Qk(0) = 1.
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Although the Ising Baxter equations were the same for QL and QR, in this case, since we take
the limit of the general non-Hermitian BBS case, QL

k (1) and QR
k (1) come out different.

6.3. Norms and factorized matrix elements for the homogeneous Ising model

In this subsection, we state a new factorized formula for the matrix element of the spin operator
in the Ising model on a finite lattice. Let |�0〉 and |�1〉 be two eigenvectors of the periodic
Ising model from the sectors ρ = 0 and ρ = 1, respectively. First, let us consider the case
when these states do not contain fermionic excitations with momenta q = qn,k and q = −qn,k

simultaneously, so that the eigenvalue polynomials do not contain a factor (λ − rn,k)
2. We

introduce the subset D ⊂ {1, 2, . . . , n − 1} of indices k for which the eigenvalue polynomials
of |�0〉 and |�1〉 contain the factor

(
λ2 − r2

n,k

)
, i.e. for which we have the case (iv) of

subsection 6.2. Denote by |D| the size of the set D.
Let δ = 1 if σ0 = σπ and δ = 0 otherwise. We also use the short notations:

λ0 = (−1)σ0s0, λπ = (−1)σπ sπ and q̂k = (−1)σqn,k
+kqn,k . Now the matrix element is given by

the factorized formula
〈�0|un|�1〉〈�1|un|�0〉

〈
̃0,0|
̃0,0〉2
= (

λ2
π − λ2

0

)(|D|−δ)/2
(λ0 + λπ)δ

×
∏
k∈D

2rn,k

(rn,k + λ0)(rn,k + λπ)

∏
k<m

k,m∈D

rn,k + rn,m

rn,k − rn,m

∏
k<m

k,m∈D

sin 1
2 (q̂k − q̂m)

sin 1
2 (q̂k + q̂m)

. (70)

The proof of (70) is given in our sequel paper [16].
In order to compare (70) to the results obtained by Bugrij and Lisovyy in [14, 15], we

have to calculate instead of (70) the ratio
〈�0|un|�1〉〈�1|un|�0〉

〈�0|�0〉〈�1|�1〉 , (71)

which has the advantage to be independent of the particular normalization of |�0〉 and |�1〉.
To do this we have to divide (70) by

〈�0|�0〉〈�1|�1〉/〈
̃0,0|
̃0,0〉2. (72)

The expression for (72) was obtained in (56) for generic parameters. In the case of the
Ising model the norms of the degenerated states cannot be directly obtained from (56), because
the numerator and denominator contain zeros. When degenerated states appear, that is when D
is not empty, we have to be careful in using the formula (56) for the norms and use l’Hôpital’s
rule. In order to implement l’Hôpital’s rule we proceed similarly to what we did in case (iv)
of section 6.2 for finding the solutions of Baxter equations: we go off the Ising point taking
ad − bc = η to be small finite and keep terms linear in η. Let q̌l = (−1)σqn,l +1qn,l for l ∈ D.
Then the coefficient of λ in

A(q̌l )
(
λ − sq̌l

)(
λ + s−q̌l

) = A(q̌l)λ
2 − C(q̌l ) + 2iB(q̌l )λ (73)

gives −sq̌l
+ s−q̌l

= 2iB(q̌l)/A(q̌l ). Due to A(q̌l )r
2
n,l − C(q̌l ) ∼ o(η) (when η → 0) the

formula (73) at λ = rn,l gives (rn,l − sq̌l
)(λ + s−q̌l

) ∼ 2iB(q̌l )rn,l/A(q̌l). Therefore

−sq̌l
+ s−q̌l

(rn,l − sq̌l
)(rn,l + s−q̌l

)
→ 1

rn,l

for η → 0

for the corresponding factor in the formula (56) for norm. Note that this result is independent
of which of the two quasi-momenta qn,l or −qn,l is excited. Now we have to take the product
of one term (56) for R with another for NS. Since the terms at sπ appear only in NS (R) for n
odd (even), we get two slightly different formulae for these cases:
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For n odd we have

〈�0|�0〉〈�1|�1〉
〈
̃0,0|
̃0,0〉2

= 2|D|
n−1∏
k=1

(2rn,k) ·
∏

k -odd(λπ ± rn,k)∏
k -even(λπ + rn,k)

·
∏

k -even(λ0 ± rn,k)∏
k -odd(λ0 + rn,k)

×
∏

k<l,k,l -odd((rn,k + rn,l)(±rn,k ± rn,l))
∏

k<l,k,l -even((rn,k + rn,l)(±rn,k ± rn,l))∏
k -odd,l -even((±rn,k + rn,l)(rn,k ± rn,l))

,

(74)

and for n even

〈�0|�0〉〈�1|�1〉
〈
̃0,0|
̃0,0〉2

= 2|D|
n−1∏
k=1

(2rn,k) · (λ0 + λπ)

∏
k -even(λ0 ± rn,k)(λπ ± rn,k)∏
k -odd(λ0 + rn,k)(λπ + rn,k)

×
∏

k<l,k,l -odd((rn,k + rn,l)(±rn,k ± rn,l))
∏

k<l,k,l -even((rn,k + rn,l)(±rn,k ± rn,l))∏
k -odd,l -even((±rn,k + rn,l)(rn,k ± rn,l))

,

(75)

where the sign at ±rn,m is fixed ‘−’ if m ∈ D and ‘+’ otherwise.
The final result (71) will be given in terms of λ0, λπ and rn,k, k = 1, 2, . . . , n − 1. Now

if the eigenvalue polynomials contain the factors (λ − rn,l)
2 instead of (λ + rn,l)

2 for some l
we have to replace rn,l → −rn,l in the final formula for the matrix element (71) for all such l.

Let us finish this section by giving as an example the matrix element for the 3-site chain
between |�0〉 = |π, π/3〉NS and |�1〉 = |0〉R. Using (74) we have

〈�0|�0〉〈�1|�1〉
〈
̃0,0|
̃0,0〉2

= − 8r31r32(r31 + sπ )(r32 − s0)(
r2

32 − r2
31

)
(r31 − s0)(r32 − sπ )

.

Since in this case D = {1}, formula (70) gives
〈�0|u3|�1〉〈�1|u3|�0〉

〈
̃0,0|
̃0,0〉2
= − 2r31(s0 + sπ )

(r31 − s0)(r31 − sπ )
.

Finally,

〈�0|u3|�1〉〈�1|u3|�0〉
〈�0|�0〉〈�1|�1〉 = (s0 + sπ )

(
s2

2π/3 − s2
π/3

)
(s2π/3 − sπ )

4s2π/3
(
s2
π/3 − s2

π

)
(s2π/3 − s0)

,

where due to (65)

s2
π/3 = r2

31 = b4 − b2 + 1

a4 − a2 + 1
, s2

2π/3 = r2
32 = b4 + b2 + 1

a4 + a2 + 1
.

7. Conclusions

In this paper, we continue our calculation of state vectors and matrix elements of the finite-
size inhomogeneous ZN -Baxter–Bazhanov–Stroganov lattice spin model, using the method
of separation of variables. In a previous paper [1], we gave the right eigenvectors for the
auxiliary system and the Baxter equations which determine the periodic boundary condition
BBS eigenvectors. Here, we complete this work by calculating explicit formulae for the
corresponding left eigenvectors and norms and matrix elements of a single operator. A main
result is the expression of theorem 1 for the norm of the state vectors of the auxiliary system:
the multiple summation over the intermediate states is performed, so that the norm is put into
a factorized form. For N = 2 the Baxter equations are solved explicitly, and also the norm of
the periodic model is put into a compact factorized form. Since it is an open task to perform
the intermediate spin summations for matrix elements of the inhomogeneous periodic model,
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in the last section we proceeded with the homogeneous Ising model parameters. There we
manage to perform the summations and we present a new factorized formula for the matrix
elements of spin operator, delegating the somewhat lengthy derivation and comparison with
the corresponding formula in [14, 15] to our sequel paper [16].
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Appendix. The main summation formula

Consider a degree n polynomial f (t) = fnt
n + · · · + f0 and its interpolation formula through

n + 1 arbitrary not coinciding points c1, . . . , cn+1:

f (t) =
n+1∑
k=1

f (ck)

n+1∏
s �=k

t − cs

ck − cs

, fn =
n+1∑
k=1

f (ck)∏n+1
s �=k(ck − cs)

. (A.1)

We shall use (A.1) for fn = 0, i.e. for polynomials f (t) of degree less than n, obtaining a sum
rule valid for an arbitrary choice of the parameters {c1, . . . , cn+1}:

n+1∑
k=1

f (ck)∏n+1
s �=k(ck − cs)

= 0. (A.2)

Now take an arbitrary polynomial f (t) of degree less than n + N and choose n + N points
(c1, . . . , cn+N) = (b1, . . . , bn, r, ωr, . . . , ωN−1r). Then the sum rule corresponding to (A.2) is

N−1∑
ρ=0

ωρrf (ωρr)∏n
s=1(ω

ρr − bs)
= NrN

n∑
k=1

f (bk)(
rN − bN

k

) ∏n
s=1
s �=k

(bk − bs)
, (A.3)

since
∏N−1

i=0,i �=ρ(ωρr − ωir) = Nω−ρrN−1.

The goal of this appendix is to prove equation (28) of the main text, i.e. we shall
show by induction that for the sets a(n) = {a1, . . . , an−2} = {r1ω

−ρ1 , . . . , rn−2ω
−ρn−2} and

b(n) = {b1, . . . , bn−1} the ZN -symmetrical sum over all phases of the parameters al in

Sn(a(n), b(n)) =
∑

ρ1,...,ρn−2∈(ZN )n−2

n−2∏
l=1

(
al

∏n−2
j=l+1(al − aj )∏n−1
k=1(al − bk)

)
(A.4)

can be performed explicitly, so that we obtain (A.4) in the factorized form

Sn(a(n), b(n)) = Nn−2
n−2∏
l=1

aN
l

n−1∏
k<k′

bN
k − bN

k′

bk − bk′

∏n−2
l<l′

(
aN

l − aN
l′

)
∏n−1

l=1

∏n−2
l′=1

(
bN

l − aN
l′

) . (A.5)

This assertion is correct for n = 3, as can be seen by explicit summation, using∑
ρ∈ZN

b/(rω−ρ − b) = NbN/(rN − bN):

S3(a1; b1, b2) =
∑
ρ1

a1

(a1 − b1)(a1 − b2)
=

∑
ρ1

1

b1 − b2

(
b2

b2 − r1ω−ρ1
− b1

b1 − r1ω−ρ1

)

= N

b1 − b2

(
bN

2

bN
2 − aN

1

− bN
1

bN
1 − aN

1

)
= NaN

1

(
bN

1 − bN
2

)
(b1 − b2)

(
bN

1 − aN
1

)(
bN

2 − aN
1

) .
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For general n it will be useful to use the induction assumption (A.4) also in the form

Sn(a(n), b(n)) = S̃n(a(n))

n−1∏
k<k′

bN
k − bN

k′

bk − bk′

1∏n−1
l=1

∏n−2
l′=1

(
bN

l − aN
l′

)
with

S̃n(a(n)) = Nn−2

(
n−2∏
l=1

aN
l

)
n−2∏
l<l′

(
aN

l − aN
l′

)
. (A.6)

In proceeding with the induction proof of (A.5) we start separating terms involving the last
summation (over ρn−2) in (A.4) and perform this sum using (A.3) with f (t) = ∏n−3

m=1(am − t):

Sn =
∑

ρ1,...,ρn−3

(
n−3∏
l=1

al

∏n−3
j=l+1(al − aj )∏n−1
m=1(al − bm)

)∑
ρn−2

an−2

∏n−3
m=1(am − an−2)∏n−1
s=1 (an−2 − bs)

=
∑

ρ1,...,ρn−3

(
n−3∏
l=1

al

∏n−3
j=l+1(al − aj )∏n−1
m=1(al − bm)

)
NaN

n−2

n−1∑
k=1

∏n−3
m=1(am − bk)(

aN
n−2 − bN

k

) ∏n−1
s=1
s �=k

(bk − bs)
.

The first summation in the last equation involves also the phases of am in the term∏n−3
m=1(am − bk) of the last numerator. However, this term cancels just the term m = k

in the denominator of the first bracket. So, comparing to (A.4) for n → n − 1 we can write

Sn(a(n), b(n)) = NaN
n−2

n−1∑
k=1

Sn−1
(
a(n)

n−2, b(n)
k

)
(
aN

n−2 − bN
k

)∏n−1
s=1
s �=k

(bk − bs)
, (A.7)

where b(n)
k is the (n − 2)-component vector resulting from b(n) omitting the component bk .

Similarly, a(n)
n−2 is the (n−3)-component vector resulting from a(n) by omitting the component

an−2. Now we can use the induction assumption (A.5) to insert here Sn−1,

Sn(a(n), b(n)) = NaN
n−2

n−1∑
k=1

1(
aN

n−2 − bN
k

)∏n−1
s=1
s �=k

(bk − bs)

×Nn−3

(
n−3∏
l=1

aN
l

)
n−1∏

m<m′
m,m′ �=k

bN
m − bN

m′

bm − bm′

∏n−3
l<l′

(
aN

l − aN
l′

)
∏n−1

l=1
l �=k

∏n−3
l′=1

(
bN

l − aN
l′

) . (A.8)

It is more convenient to write (A.7) in terms of S̃n(a(n)), equation (A.6), since then the
b-dependence is explicit:

S̃n(a(n))

n−1∏
k′<k′′

bN
k′ − bN

k′′

bk′ − bk′′

1∏n−1
l=1

∏n−2
l′=1

(
bN

l − aN
l′

) = NaN
n−2S̃n−1

(
a(n)

n−2

)

×
n−1∑
k=1

n−1∏
k′<k′′

k′,k′′ �=k

bN
k′ − bN

k′′

bk′ − bk′′

1∏n−1
l=1
l �=k

∏n−3
l′=1

(
bN

l − aN
l′

) 1(
aN

n−2 − bN
k

) ∏n−1
s=1
s �=k

(bk − bs)
.

Apart from a sign, the terms linear in the bk′ cancel since∏n−1
k′<k′′(bk′ − bk′′)∏n−1
k′<k′′

k′,k′′ �=k

(bk′ − bk′′)
=

n−1∏
k′=k+1

(bk − bk′)

k−1∏
k′=1

(bk′ − bk) = (−1)k−1
n−1∏

s=1,s �=k

(bk − bs).
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Using the same formula for the bN
k′ -terms and simplifying the bN

l − aN
l′ -terms, we get

S̃n(a(n)) = −NaN
n−1S̃n−1

(
a(n)

n−2

) n−1∑
k=1

∏n−3
l=1

(
bN

k − aN
l

)∏n−1
l �=k

(
bN

l − aN
n−2

)
∏n−1

s=1,s �=k

(
bN

k − bN
s

) .

Here the sum can be calculated using the identity

n−1∑
k=1

n−3∏
l=1

(
bN

k − aN
l

) n−1∏
s=1
s �=k

bN
s − aN

n−2

bN
k − bN

s

= −
n−3∏
l=1

(
aN

l − aN
n−2

)
,

so that

S̃n(a(n)) = NaN
n−2S̃n−1

(
a(n)

n−2

) n−3∏
l=1

(
aN

l − aN
n−2

)
which confirms (A.6) and so also (A.5).

References

[1] von Gehlen G, Iorgov N, Pakuliak S and Shadura V 2006 The Baxter–Bazhanov–Stroganov model: separation
of variables and the Baxter equation J. Phys. A: Math. Gen. 39 7257–82 (Preprint nlin.SI/0603028)

[2] Baxter R J 2004 Transfer matrix functional relations for the generalized τ2(tq ) model J. Stat. Phys. 117 1–25
[3] Baxter R J 1989 Superintegrable chiral Potts model: thermodynamic properties, an inverse model, and a simple

associated Hamiltonian J. Stat. Phys. 57 1–39
[4] Bazhanov V V and Stroganov Yu G 1990 Chiral Potts model as a descendant of the six-vertex model J. Stat.

Phys. 59 799–817
[5] Baxter R J, Bazhanov V V and Perk J H H 1990 Functional relations for the transfer matrices of the Chiral Potts

model Int. J. Mod. Phys. B 4 803–69
[6] Baxter R J 1990 Chiral Potts model: eigenvalues of the transfer matrix Phys. Lett. A 146 110–4
[7] Korepanov I G 1987 Hidden symmetries in the 6-vertex model, Chelyabinsk Polytechnical Institute Archive

VINITI No 1472-V87 (in Russian)
Korepanov I G 1994 Hidden symmetries in the 6-vertex model of statistical physics Zapiski Nauchn. Semin.

POMI 215 163–77 (Preprint hep-th/9410066)
Korepanov I G 1994 The method of vacuum vectors in the theory of Yang–Baxter equation Preprint

nlin.SI/0010024
[8] Roan S S 2007 Fusion operators in the generalized τ (2)-model and root-of-unity symmetry of the XXZ spin

chain of higher spin J. Phys. A: Math. Theor. 40 1481–511
[9] Sklyanin E K 1990 Functional Bethe Ansatz Integrable and Superintegrable Systems ed B A Kupershmidt

(Singapore: World Scientific) pp 8–33
[10] Bugrij A I, Iorgov N Z and Shadura V N 2005 Alternative method of calculating the eigenvalues of the transfer

matrix of the τ2 model for N = 2 JETP Lett. 82 311–5
[11] Tarasov V O 1992 Cyclic monodromy matrices for the R-matrix of the six-vertex model and the chiral Potts

model with fixed spin boundary conditions Int. J. Mod. Phys. A 7 963–75
[12] Kharchev S and Lebedev D 2000 Eigenfunctions of GL(N, R) Toda chain: the Mellin–Barnes representation

JETP Lett. 71 235–8
[13] Babelon O 2003 Equations in dual variables for Whittaker functions Lett. Math. Phys. 65 229–40
[14] Bugrij A and Lisovyy O 2003 Spin matrix elements in 2D Ising model on the finite lattice Phys. Lett. A 319 390–4

(Preprint 0708.3625)
[15] Bugrij A and Lisovyy O 2004 Correlation function of the two-dimensional Ising model on a finite lattice: II

Theor. Math. Phys. 140 987–1000 (Preprint 0708.3643)
[16] von Gehlen G, Iorgov N, Pakuliak S, Shadura V and Tykhyy Yu 2007 Form-factors in the finite size Baxter–

Bazhanov–Stroganov model: II. Ising model on the finite lattice (in preparation)
[17] Bazhanov V V and Baxter R J 1992 New solvable lattice models in three dimensions J. Stat. Phys. 69 453–85
[18] Lisovyy O 2006 Transfer matrix eigenvectors of the Baxter–Bazhanov–Stroganov τ2-model for N = 2 J. Phys.

A: Math. Gen. 39 2265–85 (Preprint nlin.SI/0512026)

http://dx.doi.org/10.1088/0305-4470/39/23/006
http://www.arxiv.org/abs/nlin.SI/0603028
http://dx.doi.org/10.1023/B:JOSS.0000044062.64287.b9
http://dx.doi.org/10.1007/BF01023632
http://dx.doi.org/10.1007/BF01025851
http://dx.doi.org/10.1142/S0217979290000395
http://dx.doi.org/10.1016/0375-9601(90)90646-6
http://www.arxiv.org/abs/hep-th/9410066
http://www.arxiv.org/abs/nlin.SI/0010024
http://dx.doi.org/10.1088/1751-8113/40/7/005
http://dx.doi.org/10.1134/1.2130919
http://dx.doi.org/10.1142/S0217751X92004129
http://dx.doi.org/10.1134/1.568323
http://dx.doi.org/10.1023/B:MATH.0000010714.56215.2a
http://dx.doi.org/10.1016/j.physleta.2003.10.039
http://www.arxiv.org/abs/0708.3625
http://dx.doi.org/10.1023/B:TAMP.0000033035.90327.1f
http://www.arxiv.org/abs/0708.3643
http://dx.doi.org/10.1007/BF01050423
http://dx.doi.org/10.1088/0305-4470/39/10/003
http://www.arxiv.org/abs/nlin.SI/0512026

	1. Introduction
	2. L-operator
	3. Eigenvectors of
	3.1. New basis vectors, one-site states
	3.2. Right and
	3.3. The norms
	3.4. Action of

	4. Periodic model: Baxter equation
	5. Periodic
	5.1. Eigenvalues of the transfer matrix for the generalized homogeneous Ising model
	5.2. Norms and
	5.3. Matrix elements

	6. The homogeneous Ising model
	6.1. Relation to the standard Ising model
	6.2. Solution of the Baxter equations
	6.3. Norms and factorized matrix elements for the homogeneous Ising model

	7. Conclusions
	Acknowledgments
	Appendix. The main summation formula
	References

